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bstract

This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can
e used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties.
rom a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two
utputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying
arameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the
ecursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device
o excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the

nmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy
o improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive
ontroller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Concerns for the shortage of fossil fuels and for environ-
ental protection have increased the interest in fuel cells as a

ower source over the past decade. Proton exchange membrane
uel cells, also known as polymer electrolyte membrane fuel
ells, have the advantages of high power and energy density,
ong cell and stack life, low operation temperature, fast start-up,
ow corrosion, and higher efficiency, compared to most batter-
es and other fuel cell technologies. Fuel cells are subject to
arious situations of time-varying load, during which the air
ow, gas pressure, temperature, humidity, membrane hydration

ust be controlled over a wide range of operation. A series of

perations require prompt measurements of system states by
set of sensors, such as flowmeter, thermocouples, pressure
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ransducer, voltmeter, hall sensor, hydrogen detector, etc. These
ignals are fed back to the microprocessor to calculate proper
ontrol actions executed by various actuators, such as air pump,
umidifier, solenoid valves, fan motors and safety devices.

The complex, nonlinear dynamics of fuel cell systems are
sually approximately described by the principles of electro-
hemistry, fluid dynamics, thermodynamics and heat transfer;
nd in terms of physical parameters, material properties and
niversal constants under various assumptions and constraints.
he voltage and current variations respond instantaneously to

he faster dynamics of fuel cells, involving reactant pressure
nd flow rate, while the slow dynamics of temperature regu-
ation and heat dissipation dominate the steady state response.

any researchers have devoted themselves to the steady-state
odel of PEM fuel cells, describing the relationship between
hysical variables through Nernst equation, gas diffusion equa-
ion, concentration, voltage drop equation, etc. Most recently,
n increasing number of researches have focused on dynamic
odels for describing the transient response of PEM fuel cell

mailto:ypyang@ntu.edu.tw
dx.doi.org/10.1016/j.jpowsour.2006.11.038
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Nomenclature

a, b, c, d’s parameters
A, B, C parameter matrices
G(z) transfer function of plant
H(z) transfer function of controller
Ic fuel cell current output (A)
K estimation gain
Ki integral gain
Kp proportional gain
NA air flow rate (l min−1)
NH hydrogen flow rate (l min−1)
pi desired closed-loop poles
P covariance matrix
q forward shift operator
q−1 backward operator
R internal resistance of fuel cell (ohm)
T(z) closed-loop transfer function
u input vector
Vc fuel cell voltage output (V)
w noise vector
y output vector
z z-transform operator

Greek letters
φ observation vector
λ forgetting factor
θ parameter vector
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and NH. Therefore, the fuel cell stack model can be expresses as
τ sampling time

ystems. Pukrushpan et al. [1] described transient dynamics by
set of first order equations governing air compressor, mass

ransportation, energy conservation of the reactant flows and
ressures in the cathode and anode. Ceraolo et al. [2] pro-
ided more precise partial differential equations to describe both
tatic and dynamic behaviors of the PEM fuel cell, including
as diffusion, proton concentration, mass transportation, etc. In
heir spatial, time-dependent fuel cell model, Golbert and Lewin
3] included dynamics of water condensation, evaporation and
eneration, as well as quasi-steady-state temperature profile.
athapati et al. [4] derived a dynamic model with the effects of
harge double-layer capacitance, dynamics of flow and pressure,
nd mass/heat transient features of fuel cells, which predicted
he transient response of cell voltage, temperature, gas low rates,
ressures under sudden change in load current.

No matter how complex the fuel cell dynamic model is, it
ever describes system responses precisely in terms of system
arameters. Their nonlinearity and time varying characteris-
ics inevitably pose difficult problems on system identification
nd control. Simplified models, either linear or nonlinear, with
ominal parameters are usually valid within a linear range of

peration. Such models are usually used to investigate stability,
ensitivity, observability, and controllability, before designing a
ontroller. More practically, these parameters are varying with
ime and operating state, and are identified in real time to match

V

I
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ystem response with minimal errors. Therefore, adaptive con-
rol can serve as a feedback law to achieve control objectives
ubject to the variation of system parameters as well as external
isturbances. Pukrushpan et al. [1] designed an observer-based
eedback controller to protect the fuel cell stack from oxy-
en starvation during changes of current command, using the
inear quadratic technique based on the linearized state-space

odel. Paradkar et al. [5] integrated a linearized FEM fuel cell
odel into a power plant, and simulated a load frequency control

roblem by an optimal controller based on disturbance accom-
odation control theory. Schumacher et al. [6] employed a fuzzy

ontroller for the humidity management by adjusting the fan
oltage for the air supply to a miniature PEM. Jurado and Saenz
7] addressed that their proposed adaptive control strategy was
ble to stabilize a hybrid fuel cell and turbine system subject to
ystem parameter variations and external disturbances. Meyer
nd Revankar [8] surveyed the control-oriented models and con-
rol strategies of PEM fuel cell systems. They indicated that
uture attempts to develop nonlinear multi-input multi-output
ystems, as this paper proposes, must be important over the entire
perating range in order to seek reduced reactant usage under
arious power demands.

. Fuel cell system modeling

In the papers mentioned above, the PEM fuel cell is basically
ssembled from a series of cells, each of which is composed of a
roton exchange electrolyte sandwiched by anode and cathode
lectrodes, and each electrode consists of a catalyst and a gas dif-
usion layer. In order to develop the control strategy of a fuel cell,
ts dynamic model from previous studies is adopted, describing
ernst equation, cathode gas diffusion, cathode kinetics, and
roton concentration dynamics [2,9–11].

From the system viewpoint, hydrogen at a certain pressure
s fed at an adjustable flow rate NH, which is regarded as an
nput variable. On the other hand, air at standard atmosphere of
bar is often transported by air pump to provide oxygen to the
athode. The partial pressure of oxygen is proportional to the
ir pressure, as well as to the flow rate of air NA, which is also
onsidered an input variable of the fuel cell. The cell voltage and
urrent are normally chosen as system outputs. From modern
ontrol theories [12], the control-oriented fuel cell system block
iagram can be approximated as a two-input two-output system
s shown in Fig. 1, and is reduced to a standard diagram with
our blocks in Fig. 2. These coupled blocks, denoted by Gi, i = l,
, 3, 4, describe the relationships between outputs, Ic and Vc, and
nputs, NA and NH, where R denotes the internal resistance of
he fuel cell. Assuming that the fuel cell is operated at a certain
perating point, the four blocks can be linearized as transfer
unctions of finite orders and time-varying coefficients. More
pecifically, G1 is the transfer function between Ic and NA, G2
etween Vc and NA, G3 between Ic and NH, and G4 between Vc
C = G2NA + G4NH + RIC (1)

C = G1NA + G3NH (2)
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Fig. 1. PEM Fuel cell block diagram.

his configuration is usually employed as the basis of system
dentification, as well as an adjustable model for designing the
uel cell controller.

. System identification

.1. ARMAX model and PE signal

The linear system model (1) and (2) can be represented as a
iscrete-time equation of difference operator, and leads to the
ollowing autoregressive moving-average with auxiliary input
odel, the ARMAX model [13]:

(q, k)y(k) = B(q, k)u(k) + C(q, k)w(k) (3)

(q, k) = a0(k) + a1(k)q−1 + a2(k)q−2 + · · · + ar(k)q−r

(4)

(q, k) = b1(k)q−1 + b2(k)q−2 + · · · + br(k)q−r (5)

(q, k) = c0(k) + c1(k)q−1 + c2(k)q−2 + · · · + cr(k)q−r (6)
here y denotes the system m-dimensional output vector, u rep-
esents the system n-dimensional input vector, w is composed
f higher-order dynamics and disturbances, and is known as an
stimation error vector. The integer k denotes the time instant

Fig. 2. Approximated two-input and two-output block diagram.
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f sampling, and r is the system order. Without loss of gen-
rality, a0 = c0 = 1. In a succinct form, the term A(q,k)y(k) is
he autoregression part, where q−1 is a backward shift oper-
tor and q−hy(k) represents the past output y(k − h); h = 1, 2,
. . r; B(q,k)u(k) denotes the moving average of past inputs,
here q−hu(k) = u(k − h); and the auxiliary input C(q, k)w(k)

s included to better describe the system unmodeled dynamics,
ncluding higher-order dynamics and disturbances. Therefore,
he corresponding transfer function between outputs and inputs
n the discrete-time form becomes

i(z) = Bi(z)

Ai(z)
(7)

here Ai(z) and Bi(z) are, respectively, the z-transforms of Ai(q)
nd Bi(q), i = l, . . ., 4.

According to linear theory, all the system modes can be
xcited by an impulse input, whose frequency response is an
deal constant over all frequencies and is also known as white
oise. That means the frequency contents of an impulse consist
ntirely of sinusoidal waves of the same amplitude or strength.
n the real world, a signal with a rich content of frequencies can
e generated by a pseudo-random binary sequence (PRBS), and
his signal satisfies the persistent excitation (PE) requirement for
ystem identification.

.2. Recursive least square algorithm

The approach of recursive least square algorithm for system
dentification is to predict the system output according to the past
nformation of input and output measurements, as well as the
pdate set of system parameters. From (3)–(6), for a0 = c0 = 1,
he estimation of y(k) is expressed as

ˆ(k) = φT(k − 1)θ̂(k − 1) (8)

here

φT(k − 1) = [−y(k − 1)· · · − y(k − m)u(k − 1)

×· · ·u(k − n)w(k − 1)· · ·w(k − r)] (9)

ˆT = [â1· · ·âr, b̂1· · ·b̂r, ĉ1· · ·ĉr] (10)

nd the estimation error w(k) is defined as y(k) − ŷ(k).
At step k, when the new output is measured, the update set of

arameters are calculated by [13]

ˆ(k) = θ̂(k − 1) + K(k)[y(k) − φT(k − 1)θ̂(k − 1)] (11)

(k) = P(k − 1)φ(k − 1)[λ + φT(k − 1)P(k − 1)φ(k − 1)]
−1

(12)

(k) = ⌊
I − K(k)φT(k − 1)

⌋ P(k − 1)

λ
(13)
here the estimation gain K(k) brings the relative information
f new measurements to update the parameter estimation, and
he covariance matrix P(k) characterizes the difference between
he estimated parameters and their true values. Initially, P(0) is
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Table 1
Single fuel cell parameters and specifications

Rated power 6 W
Rated voltage 0.6 V
Rated current 10 A
Active area per cell 50 cm2 (5 cm × 10 cm)
Anode reactant Pure compressed hydrogen, 0.5 SLPM,

6 psig
Cathode reactant Humidified air, 3 SLPM, 0.05 psig (50 ◦C,

90–100% humidity)
Stoichiometry H2: 1.5, Air: 3
Operating temperature 295 K (22 ◦C)
Ambient temperature 293 K (20 ◦C)
C
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cient to describe the fundamental dynamics of the PEM fuel cell
system.

Table 2
Identified transfer functions

Transfer function Operation conditions

G1 = 6.6×10−3(z−0.58)
z2−1.31z+0.31

NH = 0.5 SLPM, Vc = 0.6 V
urrent density 0.2 A cm−2

ell voltage 0.63 V

hosen a large positive number, for example 103I, where I is an
dentity matrix, to render the inaccurate initial guess θ̂(0) quickly
egligible. The coefficient 0 < λ < 1 is called the forgetting fac-
or, which places more importance on the new information for
pdating system parameters, and less attention on the past infor-
ation.

.3. Experimental setup

The system identification is performed on a single cell of
square active area of proton exchange membrane. The sys-

em parameters and rated operating specifications are given in
able 1. The flow rate of humidified air is supplied by an air
ump, while the flow rate of hydrogen is regulated by a solenoid
alve. Either output cell voltage or current can be tuned at a spe-
ific value with an electronic load meter. Each transfer function
i is identified by measuring the corresponding set of input and
utput, while fixing the other set of input and output at their nom-
nal values. For example, G1 is the transfer function between cell
urrent and air flow rate, while cell voltage and hydrogen flow
ate are fixed; G4 is the transfer function between cell voltage
nd hydrogen flow rate, while cell current and air flow rate are
xed.

The excitation PRBS signal between 2 and 0.5 standard liter
er minute (SLPM) is used for all experiments. This PRBS sig-
al that resembles pure white noise is easily realized from a
ombination of a series of square waves of random time dura-
ion, whose spectrum contains a rich content of sinusoidal wave
nd is enough to excite all the system dynamics of fuel cell.
he system response to the PRBS is then expected to be a
ombination of step responses, and the input-output informa-
ion is used to construct the transfer function of fuel cell at a
ertain operating point. The input and output data are sampled
t 1 Hz, and are manipulated by the MATLAB solver armax
o calculate coefficients of transfer functions Gi. From the step
esponse characteristic shown in Fig. 3, the order of 2 is chosen
or the transfer function in the following process of identifica-
ion. The identified transfer functions are summarized in Table 2,

nd their corresponding frequency responses are illustrated in
igs. 4 and 5.

These second-order models of the PEM fuel cell provide sig-
ificant information as to system dynamical properties. First, the

G

G

G

Fig. 3. Hydrogen flow rate vs. fuel cell voltage.

omplexity of the fuel cell system can be reduced to a two-input
wo-output configuration. Although this configuration may not
epresent system dynamics for the whole range of operation, it
rovides a basis for the following design of adaptive or robust
ontroller. Second, the set of constant parameters in the sec-
nd order transfer function is an effective description of system
ynamics for a short time span. This is justification for the reason
f linearization of a nonlinear system around a specific oper-
ting point. Third, the bandwidth of each subsystem indicates
ow fast the system output responds to various inputs. There-
ore, engineers understand how the rate of change of hydrogen
nd air supply is moderate, and how the controller is designed
o improve the closed-loop performance.

.4. System identification with higher orders

To investigate the adequacy of the order of transfer func-
ions, higher order models are also identified and compared
ith the second order models. For example, in Fig. 6, sub-

ystem G4 between cell voltage and hydrogen flow rate shows
he Bode plot of identified transfer functions of order 2, 4 and
. These models do not have significant differences except for
igher frequencies, so a second-order transfer function is suffi-
2 = 2.2×10−4(z−0.85)
z2−1.36z+0.36

NH = 0.5 SLPM, Ic = 10 A

3 = 6.2×10−2(z−1.08)
z2−1.42z+0.43

NA = 3 SLPM, Vc = 0.6 V

4 = 6.6×10−4(z−1.12)
z2−1.38z+0.38

NA = 3 SLPM, Ic = 10 A
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Fig. 4. Frequency response of subsystem G1 and G2 (2nd order).
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Fig. 5. Frequency response of

. System model with time-varying parameters

In the previous sections, the nonlinear, time-varying fuel cell
ystem was operated over 450 s, and yields a set of convergent

arameters that are used to describe system dynamics in the
teady state. Note that the random on–off operation of a fuel cell
ystem is not suitable for normal operation, and this procedure
s only realized for the purpose of system identification. It is also

Fig. 6. Bode plots of subsystem G4 of different orders.
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stem G3 and G4 (2nd order).

ot reasonable to express a nonlinear, time-varying system with
set of transfer functions of finite orders and constant parame-

ers. This is accounted and ensured by fitting the experimental
esponse with the identified time-invariant transfer functions as
hown in Fig. 7. The responses they do not fit well give strong
vidence that the time-invariant transfer functions are not able
o describe true system dynamics.

Therefore, it is reasonable to investigate the history of param-
ter variations in Fig. 8 during the identification process. It is
ot surprising that all parameters vary with time to reflect the
onlinear and time-varying properties of fuel cell systems. The
orresponding responses simulated by the second-order transfer
unctions with time-varying parameters fit closely with those
rom experiments, as shown in Fig. 9. This evidence of excellent
esponse curve fitting with time-varying parameters provides a
trong basis for the application of adaptive control to improve
uel cell system performance.

. Adaptive controller design

To introduce the adaptive control and examine its efficacy,

he control strategy is simplified to regulate output voltage by
djusting air flow rate subject to plant variations, while the load
urrent and hydrogen flow rate remain constant. In other words,
he fuel cell dynamics are simplified as a single-input single out-
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Fig. 7. Experimental response verse simulative response with transfer functions of constant parameters (upper: G1 and G2, lower: G3 and G4).

Fig. 8. Variation of system parameters (upper: G1 and G2; lower: G3 and G4).
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Fig. 9. Response fitting between experiments and simu

ut model G2 to describe the relationship between cell voltage
nd air flow rate. The reason why the G2 is chosen for simu-
ation is to compare the experimental results in the following
ection, where a non-commercialized prototype from a collabo-
ating research group is used and its inlet flow rate of hydrogen
s not adaptively controlled but adjusted by a solenoid valve in
scheduled sequence. Moreover, the output current of fuel cell

s usually requested by demand and is regarded as an external
isturbance. Therefore, the control of cell voltage by the air flow
ate is significantly investigated in this paper, as a foundation of
xploring multi-variable controls.

The adaptive control strategy includes the specification of
esired closed-loop poles, on-line parameter identification and
alculation of control gains, so that the output is regulated at a
esired command. This adaptive control scenario is illustrated
n Fig. 10 and is demonstrated in the following simulations. The
esired closed-loop poles are chosen to satisfy the requirements
f stability and performance so that the fuel cell output voltage

s regulated at a desired level under load and system variations.
hese variations are detected by the on-line parameter identifier

rom which new parameters are estimated to update new control
ctions.

Fig. 10. Adaptive control scenario of fuel cell.
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s by transfer functions with time-varying parameters.

From previous results of system identification, it is sufficient
o approximate G2 as a second-order transfer function,

(z) = b0z + b1

z2 + a1z + a2
(14)

n integrator is added so that the plant is augmented to be a third-
rder system; it has memory to keep the past information and
nables the controller to accumulate enough effort to eliminate
rrors in the steady-state [12]. When the feedback controller is
hosen as a second-order model

(z) = c2z
2 + c1z + c0

z2 + d1z + d2
(15)

he corresponding closed-loop transfer function becomes

(z) = G(z)H(z)/(z − 1)

1 + G(z)H(z)/(z − 1)
(16)

ts characteristic equation becomes

(z − 1)(z2 + d1z + d2)(z2 + a1z + a2) + (b0z + b1)

× (c2z
2 + c1z + c0) = (z − p1)(z − p2)(z − p3)

× (z − p4)(z − p5) (17)

here the pi’s are desired closed-loop poles placed inside the unit
ircle, which is the stable region of poles for a linear discrete-
ime system. Therefore, the control parameters c’s and d’s can be
alculated by the desired closed-loop poles and update system
arameters at each sampling instant. The simulation is per-

ormed by Simulink as shown in Fig. 11. The plant is a two-input
wo-output transfer function matrix of four elements, in which
ach element represents a subsystem expressed as a higher-order
4th or 6th order) transfer function, which has been identified in
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rol simulation by Simulink.
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5
at 10 V and 10 A, respectively, which is a non-commercialized
prototype from a collaborating research group. Therefore, the
inlet flow rate of hydrogen is not adaptively controlled but
Fig. 11. Adaptive cont

he previous sections. The auxiliary input term is also included to
ntroduce higher-order dynamics and external disturbances, so
hat it is more realistic to simulate a real PEM fuel cell system.
he system identification is concurrently processed to obtain
set of system parameters of a reduced second-order system
odel (14).
During the system identification, the variable forgetting fac-

or is applied to accommodate current status of time-varying
ystem dynamics [13]:

(k) = λ0λ(k − 1) + (1 − λ0) (18)

here the initial forgetting factor is λ(0) = 0.95 and λ0 = 0.99.
In the simulation, the load current and hydrogen flow rate are

oth fixed, while subsystem G2 is simplified as a second-order
ransfer function with parameters varying at 150, 200, 250, 300,
00, and 450 s, as shown in Fig. 12. The sampling time is 0.005 s,
nd the estimated parameters are given in Fig. 13 with minor
ifferences. The corresponding output voltage changes abruptly
s the plant varies, but the adaptive controller soon obtains the
orrect information and adjusts the input air flow rate to achieve
he desired command as shown in Fig. 14. The zoom-in part

learly illustrates the fast adaptation of control toward command
ut with a slight oscillation that demonstrates an inheritance of
econd-order systems.

Fig. 12. Parameters of 2nd order time-varying subsystem G2.
F
a

Fig. 13. The estimated parameter of subsystem G2.

. Experimental results

The PEM fuel cell for the experiment is a 100 W stack of
0 cm2 cross-sectional area, with rated voltage and rated current
ig. 14. Adaptive control performance of subsystem G2 and zoom-in response
t the 150th second.
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Fig. 17. Adaptive voltage regulation under various current load.
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displayed in Fig. 19.
Fig. 15. Air flowrate vs. pressure of air pump.

djusted by solenoid valve, which is on for 3 s and off for the
ther 60 s at inlet pressure of 6 psi, so that a sufficient amount
f hydrogen is supplied to maintain a rated operation. The inlet
ir pressure is also kept at 6 psi by adaptively adjusting the input
oltage of air pump according to the flow rate and pressure
urve in Fig. 15. That means the adaptive control strategy on
he fuel cell stack is examined on the single-input and single
utput basis. More specifically, the fuel cell output voltage is
egulated by adaptively adjusting the voltage of air pump that in
urn changes air flow rate, under various request of current from
oad, while the hydrogen is supplied by a fixed valve with on–off
rocess.

The experimental setup of fuel cell stack and its peripheral
evices are schemed in Fig. 16. The on-line parameter identifi-
ation and adaptive control law are performed with Matlab on
laptop computer, while the fuel cell power is dissipated on an
lectronic load meter.

Both the plant and controller were modeled as second-order
ransfer functions in the simulation. To expedite the process of
n-line parameter identification and adaptive control, a first-
rder plant and PI-controller are chosen for simplicity, and
xpressed as

(z) = b

z + a
(19)

nd

(z) = Kp + Ki

τ

z − 1
(20)

he desired closed loop poles are placed at −0.1 and −0.2 inside
he unit disk, and the sampling time τ is chosen at 0.001 s. At

ach sampling instant, the output voltage and the parameters a
nd b are estimated in real time. The control gains Kp and Ki

re calculated during the same sampling period and used at the
ext sampling instant. Initially, the fuel cell stack is warmed up

Fig. 16. Block diagram of experimental set-up.

a
t

ig. 18. Variation of parameters a (lower) and b (upper) during adaptive control.

ithout loading. The desired output voltage is assigned at 9.5 V,
hile the load increased from 1 through 5A for each 20–30 s.

t is quite surprising that the output voltage follows the con-
tant command with minor oscillatory deviation in Fig. 17, even
hough system parameters a and b are varying as load varies,
s shown in Fig. 18. During the adaptation process, the air flow
ate is adjusted by the continuous tuning of air pump voltage as
In practice, the cell voltage remains unchanged for station-
ry applications when the air flow is well above stoichiometry,
ypically twice as much, and the water and thermal manage-

Fig. 19. Input tuning of air pump voltage.
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ent are well controlled [14]. However, the great merit of
he adaptive control is to adjust a proper amount of air stoi-
hiometry on a wide range of power demand by changing the
ir pump speed accordingly, hence excessive power of the air
ump can be restrained. It was found that the efficiency was
igher when the fuel cell was operated at a fixed stoichiometry
y varying the compressor speed than by keeping it constant
15]. Moreover, a fuel cell may not only be sensitive to the
ir stoichiometry in a restricted range of 1.5 or less, but it is
lso variable to the operating temperature, humidity, and cell
ging.

An obvious question would be why the simplest linear model
f first-order is sufficient to describe a nonlinear, time-varying
uel cell system that includes a fuel cell stack, air pump, solenoid
alves, and electronic components. From the perspective of cer-
ainty equivalent principle in system identification and adaptive
ontrol theories, a linear model of reduced order with time-
arying parameters is usually used to generate control law as
f it were a true system. In other respects, the fuel cell plant is
omposed of slow dynamics and fast dynamics; the latter decay
ast while the former remain as dominant dynamics. For exam-
le, the rotational speed of air pump usually presents a faster
esponse than the double layer capacitor property of fuel cell
tack, while the chemical reactions in fuel cell display much
aster response than the double layer capacitor. Therefore, a
ower-order ordinary differential equation is usually sufficient to
escribe the dominant dynamics of fuel cell system. According
o the previous section on system identification, the second-order
ime-invariant linear model has been proved very reliable to
escribe fuel cell stack dynamics. In this experiment, the first-
rder system model with time-varying parameters becomes a
uccessful candidate to catch the dominant dynamics of a fuel
ell stack and its peripheral devices.

The second question is that the adaptive control may not
e robust to parameter variations and external disturbances.
his can be observed from Fig. 17, where the output voltage

s very oscillatory when the requested current is 1 A. This can
e explained from two standpoints. First, the hydrogen is con-
ecutively provided in an on-off process of solenoid valve for
arious current load, so it may have been oversupplied for the low
equest of current at 1 A. The voltage soon climbs over 9.5 V, and
he air pump shuts down immediately due to oversupply of air.
he lack of oxygen due to the reduced air supply soon reduces

he output voltage, at which point the adaptive controller asks
he air pump to start again for more air supply, thereby causing
ndesirable oscillations.

Second, at the initial stage of system identification, the adap-
ive control experiences a tremendous change of parameters due
o the convergence problem as shown in Fig. 18. This uncer-
ainty in the model causes erroneous calculations on the adaptive
ontrol law by an over-simplified system model, thereby perturb-
ng the response from the desired command. This also indicates
he lack of robustness of output voltage to the air flow rate. In

ther words, the fuel cell voltage is very sensitive to the air
ow rate. This can be resolved by tuning smaller control gains,
r by introducing an optimal control objective which weighs
he difference between two successive controls to suppress con-

[
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rol oscillations. This also reduces the consumption of parasitic
ower greatly, thereby increasing the efficiency of the fuel cell
ystem.

It is worth noting that this adaptive scheme may not be the
nly or independent choice of control for the fuel cell system. A
ybrid control perspective for the combination of conventional
rocess or logic control, PID control, optimal control, robust
ontrol, stochastic control, H-infinity control, neural network
ontrol, fuzzy control, or any advanced control scheme is most
ikely to succeed in the complex fuel cell system.

. Summary and conclusions

System identification and adaptive control have performed
uccessfully on a low power PEM fuel cell. The highly non-
inear, time-varying, distributed parameter fuel cell system of
omplex electrochemical reactions has been approximated by a
wo-input two-output system, described with four system blocks.
hese blocks describe the dynamic relationship between outputs
f cell voltage and current as they relate to inputs of hydro-
en and air flow rates in terms of transfer functions that are
ime-varying as if they were a true system with true parameters.
he design of adaptive controller is based on this according to

he perspective of certainty equivalence principle. The simula-
ion and experimental results show that the adaptive control is
ffective for the fuel cell system subject to the change of sys-
em parameters and external disturbances. The robustness of
he adaptive control strategy may not be guaranteed in terms
f model uncertainty, parameter perturbation, and external dis-
urbances, although it is still a promising solution to the fuel
ell control issues. Future exploration is highly expected on the
ultivariable adaptive control of fuel cell output voltage track-

ng, power regulation, temperature, humidity, efficiency, fuel
nd air flow rates, etc. The implementation of an adaptive con-
rol strategy is also worthy of development both for stationary
nd transportation systems, as well as for low and high power
pplications.
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